高级检索

基于随机森林算法分析红树林空间范围变化—以广西海岸带为例

Analyzing the spatial range changes of mangroves using the random forest algorithm: a case study on coastal zone, Guangxi

  • 摘要: 为准确识别出红树林空间范围变化中的稳定、扩张和损失三部分,本研究结合随机森林(random forest, RF)算法准确识别红树林的能力以及植被指数反映红树林状态的高精度优势,提出一种监测红树林空间范围变化的遥感识别方法。利用Landsat系列影像合集生成2010、2020年广西海岸带的影像,计算影像合集中每幅影像的多个光谱指数,包括归一化植被指数(normalized difference vegetation index, NDVI)、改进的归一化差异水体指数(modified normalized difference water index, MNDWI)、归一化水体指数(normalized difference water index, NDWI)以及红树林植被指数(mangrove vegetation index, MVI),并结合研究区域地形高程、坡度以及MVI变化差异指数作为分类特征值,运用RF算法分别识别研究区域2010、2020年的红树林。结果表明:①将时空变化指标作为分类特征、用RF算法识别红树林,能够有效克服周期性潮水淹没以及红树林与其他植被之间光谱相似性的影响,2010、2020年识别结果的F1分数分别为0.981和0.977;②样本分析表明,MVI的波动能够良好地反应出红树林空间范围的变化。针对不同时期独立开展的红树林识别可能存在偏差的问题,通过构建MVI变化差异指数来辅助红树林的识别,能够有效确保空间范围变化分析的准确性。研究结果表明,该识别方法能够有效提高红树林空间范围变化遥感监测的准确性,有助于红树林生态系统的保护与管理。

     

    Abstract: To accurately identify the stable, expansion, and loss portions of mangrove spatial extent, this study proposed a remote sensing identification method for monitoring mangrove spatial extent changes by combining the accurate identification capability of the random forest (RF) algorithm with high-precision advantages of vegetation indices to reflect the mangrove status. Using a collection of Landsat series images of Guangxi coastal zone in years of 2010 and 2020. Multiple spectral indices, including the normalized difference vegetation index (NDVI), modified normalized difference water index (MNDWI), normalized difference water index (NDWI), and mangrove vegetation index (MVI) for the years 2010 and 2020, along with topographic elevation, slope, and the MVI change difference index, were used as classification features, and RF algorithm was applied to identify mangroves. Results indicate that firstly, using spatiotemporal change indices as classification features and the RF algorithm for mangrove identification effectively overcomes the influence of periodic tidal inundation and spectral similarities between mangroves and other vegetation. The F1 scores for 2010 and 2020 identifications are 0.981 and 0.977, respectively. Besides, the sample analysis indicates that the fluctuations in MVI can effectively reflect the changes of mangrove spatial extent. To address potential biases resulting from independently conducted mangrove identifications in different time periods, the construction of the MVI difference index is employed to assist in mangrove identification, which effectively ensures the accuracy of spatial extent change analysis. Results demonstrate that this identification method significantly improves the accuracy of remote sensing monitoring of mangrove spatial extent changes, contributing to the conservation and management of mangrove ecosystems.

     

/

返回文章
返回